BAHASA INDONESIA


       
Aspek keterampilan berbahasa :


1.  Mendengarkan (menyimak)
2.  Berbicara
3.  Membaca
4.  Menulis

Macam - macam membaca :

·         membaca sekilas
·         membaca menindai (scaning)
·         membaca dalam hati
·         membaca nyaring
·         membaca indah


Macam macam karangan
1.   Narasi
 suatu karangan yang berisi serangkaian cerita atau kejadian dari waktu ke waktu yang dijabarkan dengan urutan awal sampai akhir.
2.   Diskripsi
suatu karangan yang memaparkan atau melukiskan sesuatu dengan kata-kata secara detail dengan tujuan agar dapat dimengerti.
3. Argumentasi
 suatu karangan yang berisi penalaran yang berdasarkan pada argumen yang masuk akal.
4. Persuasi
suatu karangan yang bertujuan untuk meyakinkan seseorang, baik pembaca maupun pendengar untuk melakukan sesuatu. 
5. Eksposisi
suatu karangan yang berisi pengembangan paragraf dalam penulisan yang bertujuan untuk menjelaskan suatu maksud.

Macam - macam membaca :


·         membaca sekilas
·         membaca menindai (scaning)
·         membaca dalam hati
·         membaca nyaring
·         membaca indah
Paragraf : gabungan dari beberapa kalimat

Macam - macam paragraf :


1.  paragraf deduktif : paragraf yang kalimat utamanya ada diwal paragraf
2.  paragraf induktif : paragrafyang kalimat utamanya ada diakhir paragraf
3.  paragraf variatif : paragraf yang kalimat utamanya ada diawal dan diakhir atau ditengah 
4.  paragraf naratif : paragraf yang kalimatnya sudah menyebar kemana - mana


IPA



A. Pengertian Asam Basa


Asam dan basa sudah dikenal sejak zaman dulu. Istilah asam (acid) berasal dari bahasa Latin acetum yang berarti cuka. Istilah basa (alkali) berasal dari bahasa Arab yang berarti abu. Basa digunakan dalam pembuatan sabun. Juga sudah lama diketahui bahwa asam dan basa saling menetralkan. Di alam, asam ditemukan dalam buah-buahan, misalnya asam sitrat dalam buah jeruk berfungsi untuk memberi rasa limun yang tajam. Cuka mengandung asam asetat, dan asam tanak dari kulit pohon digunakan untuk menyamak kulit. Asam mineral yang lebih kuat telah dibuat sejak abad pertengahan, salah satunya adalah aqua forti (asam nitrat) yang digunakan oleh para peneliti untuk memisahkan emas dan perak.

Pada tahun 1884, Svante Arrhenius (1859-1897) seorang ilmuwan Swedia yang memenangkan hadiah nobel atas karyanya di bidang ionisasi, memperkenalkan pemikiran tentang senyawa yang terpisah atau terurai menjadi bagian ion-ion dalam larutan. Dia menjelaskan bagaimana kekuatan asam dalam larutan aqua (air) tergantung pada konsentrai ion-ion hidrogen di dalamnya.
Menurut Arrhenius, asam adalah zat yang dalam air melepakan ion H+, sedangkan basa adalah zat yang dalam air melepaskan ion OH–. Jadi pembawa sifat asam adalah ion H+, sedangkan pembawa sifat basa adalah ion OH–. Asam Arrhenius dirumuskan sebagai HxZ, yang dalam air mengalami ionisasi sebagai berikut.
HxZ ⎯⎯→ x H+ + Zx–
Jumlah ion H+ yang dapat dihasilkan oleh 1 molekul asam disebut valensi asam, sedangkan ion negatif yang terbentuk dari asam setelah melepaskan ion H+ disebut ion sisa asam. Beberapa contoh asam dapat dilihat pada tabel 5.1.
Basa Arrhenius adalah hidroksida logam, M(OH)x, yang dalam air terurai sebagai berikut.
M(OH)x ⎯⎯→ Mx+ + x OH–
Jumlah ion OH– yang dapat dilepaskan oleh satu molekul basa disebut valensi basa. Beberapa contoh basa diberikan pada tabel 5.2.

Asam sulfat dan magnesium hidroksida dalam air mengion sebagai berikut.
H2SO4 ⎯⎯→ 2 H+ + SO42–
Mg(OH)2 ⎯⎯→ Mg+ + 2 OH–
  • Persamaan ionisasi air dapat ditulis sebagai:
H2O(l) ←⎯⎯⎯⎯→ H+(aq) + OH–(aq)
  • Harga tetapan air adalah:

  • Konsentrasi H2O yang terionisasi menjadi H+ dan OH– sangat kecil dibandingkan dengan konsentrasi H2O mula-mula, sehingga konsentrasi H2O dapat dianggap tetap, maka harga K[H2O] juga tetap, yang disebut tetapan kesetimbangan air atau ditulis Kw.
  • Jadi,

  • Pada suhu 25 °C, Kw yang didapat dari percobaan adalah 1,0 × 10–14.
  • Harga Kw ini tergantung pada suhu, tetapi untuk percobaan yang suhunya tidak terlalu menyimpang jauh dari 25 °C, harga Kw itu dapat dianggap tetap.
  • Harga Kw pada berbagai suhu dapat dilihat pada tabel berikut.



Kekuatan asam dipengaruhi oleh banyaknya ion – ion H+ yang dihasilkan
oleh senyawa asam dalam larutannya. Berdasarkan banyak sedikitnya ion H+
yang dihasilkan, larutan asam dibedakan menjadi dua macam sebagai berikut.
1. Asam Kuat
Asam kuat yaitu senyawa asam yang dalam larutannya terion seluruhnya
menjadi ion-ionnya. Reaksi ionisasi asam kuat merupakan reaksi
berkesudahan. Secara umum, ionisasi asam kuat dirumuskan sebagai berikut.
HA(aq) ⎯⎯→ H+(aq) + A–(aq)

2. Asam Lemah
Asam lemah yaitu senyawa asam yang dalam larutannya hanya sedikit
terionisasi menjadi ion-ionnya. Reaksi ionisasi asam lemah merupakan reaksi
kesetimbangan.
Secara umum, ionisasi asam lemah valensi satu dapat dirumuskan
sebagai berikut.
HA(aq) ←⎯⎯⎯⎯→ H+(aq) + A–(aq)
Makin kuat asam maka reaksi kesetimbangan asam makin condong ke
kanan, akibatnya Ka bertambah besar. Oleh karena itu, harga Ka merupakan
ukuran kekuatan asam, makin besar Ka makin kuat asam.
Berdasarkan persamaan di atas, karena pada asam lemah [H+] = [A–],
maka persamaan di atas dapat diubah menjadi:



  • Kekuatan basa dipengaruhi oleh banyaknya ion – ion OH– yang dihasilkan oleh senyawa basa dalam larutannya.
  • Berdasarkan banyak sedikitnya ion OH yang dihasilkan, larutan basa juga dibedakan menjadi dua macam sebagai berikut.
1. Basa Kuat
  • Basa kuat yaitu senyawa basa yang dalam larutannya terion seluruhnya menjadi ion-ionnya. Reaksi ionisasi basa kuat merupakan reaksi berkesudahan.
  • Secara umum, ionisasi basa kuat dirumuskan sebagai berikut.
M(OH)x(aq) ⎯⎯→ Mx+(aq) + x OH–(aq)

dengan: x = valensi basa
M = konsentrasi basa
2. Basa Lemah
  • Basa lemah yaitu senyawa basa yang dalam larutannya hanya sedikit terionisasi menjadi ion-ionnya.
  • Reaksi ionisasi basa lemah juga merupakan reaksi kesetimbangan.
  • Secara umum, ionisasi basa lemah valensi satu dapat dirumuskan sebagai berikut.
M(OH)(aq) ←⎯⎯⎯⎯→ M+(aq) + OH–(aq)



  • Makin kuat basa maka reaksi kesetimbangan basa makin condong ke kanan, akibatnya Kb bertambahbesar.
  • Oleh karena itu, harga Kb merupakan ukuran kekuatan basa, makin besar Kb makin kuat basa.
  • Berdasarkan persamaan di atas, karena pada basa lemah [M+] = [OH–], maka persamaan di atas dapat diubah menjadi:







  • Untuk menyatakan tingkat atau derajat keasaman suatu larutan, pada tahun 1910, seorang ahli dari Denmark, Soren Lautiz Sorensen memperkenalkan suatu bilangan yang sederhana.
  • Billangan ini diperoleh dari hasil logaritma konsentrasi H+.
  • Bilangan ini kita kenal dengan skala pH. Harga pH berkisar antara 1 – 14 dan ditulis:

  • Dari uraian di atas dapat kita simpulkan bahwa:
a. Larutan bersifat netral jika [H+] = [OH–] atau pH = pOH = 7.
b. Larutan bersifat asam jika [H+] > [OH–] atau pH < 7.
c. Larutan bersifat basa jika [H+] < [OH–] atau pH > 7.
  • Karena pH dan konsentrasi ion H+ dihubungkan dengan tanda negatif, maka makin besar konsentrasi ion H+ makin kecil pH, dan karena bilangan dasar logaritma adalah 10, maka larutan yang nilai pH-nya berbeda sebesar n mempunyai perbedaan ion H+ sebesar 10n.
  • Perhatikan contoh di bawah ini.
  • Jika konsentrasi ion H+ = 0,01 M, maka pH = – log 0,01 = 2
  • Jika konsentrasi ion H+ = 0,001 M (10 kali lebih kecil) maka pH = – log 0,001 = 3 (naik 1 satuan)
  • Jadi dapat disimpulkan:
• Makin besar konsentrasi ion H+ makin kecil pH
• Larutan dengan pH = 1 adalah 10 kali lebih asam daripada larutan dengan pH = 2.

  • Untuk menentukan pH suatu larutan dapat dilakukan dengan beberapa cara, antara lain sebagai berikut.
1. Menggunakan Beberapa Indikator
  • Indikator adalah asam organik lemah atau basa organik lemah yang dapat berubah warna pada rentang harga pH tertentu (James E. Brady, 1990).
  • Harga pH suatu larutan dapat diperkirakan dengan menggunakan trayek pH indikator.
  • Indikator memiliki trayek perubahan warna yang berbeda-beda.
  • Dengan demikian dari uji larutan dengan beberapa indikator akan diperoleh daerah irisan pH larutan.
  • Contoh, suatu larutan dengan brom timol biru (6,0– 7,6) berwarna biru dan dengan fenolftalein (8,3–10,0) tidak berwarna, maja pH larutan itu adalah 7,6–8,3.
  • Hal ini disebabkan jika brom timol biru berwarna biru, berarti pH larutan lebih besar dari 7,6 dan jika dengan fenolftalein tidak berwarna, berarti pH larutan kurang dari 8,3.


Konsep Asam-Basa Bronsted dan Lowry

  • Menurut Bronsted dan Lowry, asam adalah spesi yang memberi proton, sedangkan basa adalah spesi yang menerima proton pada suatu reaksi pemindahan proton.
 
  •  Perhatikan contoh berikut.
NH4 + (aq)  +  H2O(l)  ⎯→  NH3(aq) + H3O+(aq)
asam                basa
H2O(l)  + NH3(aq) ⎯⎯→  NH4+(aq)  +  OH(aq)
asam          basa
  •  Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (donor proton) dan sebagai basa (akseptor proton).
  • Zat seperti itu bersifat amfiprotik (amfoter).
  • Konsep asam-basa dari Bronsted-Lowry ini lebih luas daripada konsep asam-basa Arrhenius karena hal-hal berikut :
  1. Konsep asam-basa Bronsted-Lowry tidak terbatas dalam pelarut air, tetapi juga menjelaskan reaksi asam-basa dalam pelarut lain atau bahkan reaksi tanpa pelarut.
  2. Asam-basa Bronsted-Lowry tidak hanya berupa molekul, tetapi juga dapat berupa kation atau anion. Konsep asam-basa ronsted-Lowry dapat menjelaskan sifat asam dari NH4Cl. Dalam NH4Cl, yang bersifat asam adalah ion NH4+ karena dalam air dapat melepas proton.
Asam dan Basa Konjugasi
  • Suatu asam setelah melepas satu proton akan membentuk spesi yang disebut basa konjugasi dari asam tersebut.
  • Sedangkan basa yang telah menerima proton menjadi asam konjugasi.
  • Perhatikan tabel berikut.

  • Pasangan asam-basa setelah terjadi serah-terima proton dinamakan asam-basa konjugasi.


Konsep Asam-Basa LEWIS
  • Teori asam basa Lewis
Asam menurut Lewis adalah zat yang dapat menerima pasangan electron (akseptor pasangan electron)
Basa menurut Lewis adalah zat yang dapat memberikan pasangan electron (donor pasangan electron).

Lewis mengamati bahwa molekul BF3 juga dapat berperilaku seperti halnya asam (H+) sewaktu bereaksi dengan NH3. Molekul BF3 dapat menerima sepasang elektron dari molekul NH3 untuk membentuk ikatan kovalen antara B dan H.
Teori asam basa Lewis lebih luas dibandingkan Arhenius dan Bronsted Lowry , karena :
  • Teori Lewis dapat menjelaskan reaksi asam basa yang berlangsung dalam pelarut air, pelarut bukan air, dan tanpa pelarut sama sekali.
  • Teori Lewis dapat menjelaskan reaksi asam basa yang tidak melibatkan transfer proton (H+), seperti reaksi antara BF3 dan NH3.

Contoh :
Tunjukkan bagaimana reaksi asam basa antara larutan HCl dan NaOH menurut teori Arhenius dapat dijelaskan dengan menggunakan teori Lewis

Reaksi antara larutan HCl dan NaOH ;
HCl(aq) + NaOH(aq)  ↔ NaCl(aq) + H2O(l)
Untuk menjelaskan reaksi ini menggunakan teori Lewis, nyatakan reaksi sebagai reaksi ion:
HCl ↔ H+ + Cl-                      NaOH ↔ Na+ + OH-
NaCl ↔ Na+  + Cl-                  H2O
Reaksi ion bersihnya adalah :
H+ + OH-↔ H2O(l

asam basa

Contoh-contoh asam

-Cuka -Asam jawa -jeruk dll
Asam adalah bahan-bahan yang bila dilarutkan dalam air akan menghasilkan ion H+ [Ion Hidrogen]

Asam kuat

  • Asam sulfat (H2SO4)
  • Asam klorida (HCl)
  • Asam nitrat (HNO3)
  • Asam bromida (HBr)
  • Asam iodida (HI)
  • Asam klorat (HClO4)
Semua asam lainnya selain 6 asam ini merupakan asam lemah.
Asam-asam lainnya:
  • Asam askorbat
  • Asam karbonat
  • Asam sitrat
  • Asam etanoat
  • Asam laktat
  • Asam fosfat

Contoh bahan yang mengandung asam

Jenis asam Kuat / lemah Terdapat pada
Asam askorbat Lemah Buah-buahan
Asam karbonat Lemah Minuman berkarbonat
Asam sitrat Lemah Jeruk
Asam etanoat Lemah Cuka
Asam laktat Lemah Susu basi
Asam klorida Kuat Lambung
Asam nitrat Kuat Pupuk
Asam fosfat Lemah Cat anti karat
Asam sulfat Kuat Aki
Asam formiat lemah semut

Sifat asam

  • Mempunyai rasa asam dan bersifat korosif.
  • Dapat mengubah warna kertas lakmus biru menjadi kertas lakmus merah.
  • Menghantarkan arus listrik
  • Bereaksi dengan logam

Hujan asam

Akibat yang ditimbulkan oleh hujan asam adalah:
  • Hujan asam dapat menyebabkan matinya hewan dan tumbuhan.
  • Hujan asam dapat merusak bangunan yang terbuat dari batu kapur.
  • Hujan asam juga merusak jembatan, bodi mobil, kapal laut dan struktur bangunan yang lain.

Reaksi asam

Reaksi asam dengan logam

Asam non-oksidator
Asam non-oksidator bereaksi dengan logam menghasilkan garam dan gas hidrogen. Asam non-oksidator adalah semua jenis asam yang ada kecuali asam sulfat pekat, asam nitrat encer, dan asam nitrat pekat. Logam yang bereaksi dengan asam non-oksidator harus berada di sebelah kiri hidrogen pada deret Volta.
Urutan deret volta: Li - K - Ba - Sr - Ca - Na - Mg - Al - Mn - Zn - Cr - Fe - Ni - Sn - Pb - H - Cu - Hg - Ag - Pt - Au
Beberap reaksi asam non-oksidator:
  • Reaksi asam dengan logam alkali
2HA + 2L → 2LA + H2
contoh reaksi:
2HCl + 2Na → 2NaCl + H2
  • Reaksi asam dengan logam alkali tanah
2HA + M → MA2 + H2
Contoh reaksi:
2HCl + Mg → MgCl2 + H2
Asam oksidator
Logam + H2SO4 pekat → garam(i) sulfat + SO2 + H2O
Logam + HNO3 encer → garam(i) nitrat + NO + H2O
Logam + HNO3 pekat → garam(i) nitrat + NO2 + H2O
Semua logam bisa bereaksi dengan asam oksidator kecuali Platina (Pt) dan Emas (Au). Contoh reaksi:
Sn + 8 HNO3 pekat → Sn(NO3)4 + 4 NO2 + 4 H2O
3 Pb + 16 HNO3 encer → 3 Pb(NO3)4 + 4 NO + 8 H2O
2 Fe + 6 H2SO4 pekat → Fe2(SO4)3 + 3SO2 + 6 H2O
Aqua regia
Aqua regia adalah campuran antara HCl pekat dan HNO3 pekat dengan perbandingan 3:1. Semua logam tanpa kecuali dapat bereaksi dengan aqua regia menghasilkan garam klorida, gas nitrogen oksida dan air. Contoh reaksi:
Fe + 3 HCl + HNO3 → FeCl3 + NO + 2 H2O
3 Cu + 6 HCl + 2 HNO3 → 3 CuCl2 + 2 NO + 4 H2O

Reaksi asam dengan oksida basa

Asam dapat bereaksi dengan oksida basa menghasilkan garam dan air. Sebagai contoh, reaksi antara asam sulfat dengan tembaga(II) oksida akan menghasilkan tembaga(II) sulfat.

Basa

Jenis-jenis basa

Basa kuat

  • Litium hidroksida (LiOH)
  • Natrium hidroksida (NaOH)
  • Kalium hidroksida (KOH)
  • Kalsium hidroksida (Ca(OH)2)
  • Stronsium hidroksida (Sr(OH)2)
  • Rubidium hidroksida (RbOH)
  • Barium hidroksida (Ba(OH)2)
  • Magnesium hidroksida (Mg(OH)2)
Semua basa lainnya selain 8 macam basa ini merupakan basa lemah.

Sifat-sifat basa

  • Mempunyai rasa pahit dan merusak kulit. Terasa licin seperti sabun bila terkena kulit.
  • Dapat mengubah kertas lakmus merah menjadi kertas lakmus biru.
  • Menghantarkan arus listrik
  • Dapat menetralkan asam

pH

pH adalah derajat keasaman yang digunakan untuk menyatakan tingkat keasaman atau kebasaan yang dimiliki oleh suatu larutan.

Alat pengukur

Alat untuk mengukur skala keasaman atau pH adalah pH meter dan kertas lakmus. Skala pHnya adalah antara 0-14. Jika memakai kertas lakmus, maka zat yang bersifat asam mengubah lakmus biru menjadi merah dan zat yang bersifat basa mengubah lakmus merah menjadi biru.

Tingkat keasaman

0-6,9 = asam
7 = netral
7,1-14 = basa

Warna standar indikator

pH 1 = Asam
pH 2 = Asam
pH 3 = Asam
pH 4 = Asam
pH 5 = Asam
pH 6 = Asam
pH 7 = Netral
pH 8 = Basa
pH 9 = Basa
pH 10 = Basa
pH 11 = Basa
pH 12 = Basa
pH 13 = Basa
pH 14 = Basa

BAHASA INGGRIS

Bahasa inggris


In The New School (disekolah baru)
FADEL : Hello
VINDO : Hi
FADEL : New student?
VINDO : Yes, you're new too, aren't you?
FADEL : Yeah, so, I'm FADEL, what is your name?
VINDO : My name is VINDO, nice to meet you
FADEL : Nice to meet you too!
VINDO : Where do you come from?
FADEL : I'm from SDN  YOSOWILANGUN LOR1, and you?
VINDO : SDN ROWOKANGKUNG 1
FADEL : Ehm...sorry, I think I want to go to toilet, bye bye,  see you  again!
VINDO : Ok! See you! 

RUMUS PYTAGIRAS

Berikut rumus asli phytagoras, perhatikan dengan seksama. 











Untuk membuktikannya buatlah sebuah persegi besar kemudian gambar persegi kecil yang berada dalam persegi besar. Ingat persegi kecil dibuat agak miring sesuai segitiga siku - siku berikut gambarnya : 


Bukti :
Luas persegi besar = Luas persegi kecil + 4 Luas segitiga 
( b + a ) . ( b + a ) = c . c + 4 . 1/2 b.a 



b2 + 2 b.a + a2 = c2 + 2 b.a

b2 + a2 = c2 + 2 b.a - 2 b.a

b2 + a2 = c2
Berdasarkan rumus diatas terbukti bahwa sisi miring sebuah segitiga siku - siku adalah akar dari jumlah kuadrat sisi - sisi yang lain.Rating: 4.5

RUMUS FISIKA

Gerak lurus beraturan

Gerak Lurus Beraturan (GLB) adalah suatu gerak lurus yang mempunyai kecepatan konstan. Maka nilai percepatannya adalah a = 0. Gerakan GLB berbentuk linear dan nilai kecepatannya adalah hasil bagi jarak dengan waktu yang ditempuh.
Rumus:
\!v=\frac{s}{t}
Dengan ketentuan:
  • \!s = Jarak yang ditempuh (m, km)
  • \!v = Kecepatan (km/jam, m/s)
  • \!t = Waktu tempuh (jam, sekon)
Catatan:
  1. Untuk mencari jarak yang ditempuh, rumusnya adalah \!s=\!v\times\!t.
  2. Untuk mencari waktu tempuh, rumusnya adalah \!t=\frac{s}{v}.
  3. Untuk mencari kecepatan, rumusnya adalah \!v=\frac{s}{t}.

Kecepatan rata-rata

Rumus:
\!v=\frac{s_{total}}{t_{total}} = \frac {V_{1} \times t_{1} + V_{2} \times t_{2} + ... + V_{n} \times t_{n}} {t_{1} + t_{2} + ... + t_{n}}

Gerak lurus berubah beraturan

Gerak lurus berubah beraturan adalah gerak yang lintasannya berupa garis lurus dengan kecepatannya yang berubah beraturan.
Percepatannya bernilai konstan/tetap.
Rumus GLBB ada 3, yaitu:
  • \!v_{t}=\!v_{0}+\!a\times\!t

  • \!s=\!v_{0}\times\!t+\frac{1}{2}\times\!a\times\!t^2

  • \!v_{t}^2=\!v_{0}^2+\!2\times\!a\times\!s
Dengan ketentuan:
  • \!v_{0} = Kecepatan awal (m/s)
  • \!v_{t} = Kecepatan akhir (m/s)
  • \!a = Percepatan (m/s2)
  • \!s = Jarak yang ditempuh (m)

Gerak vertikal ke atas

Benda dilemparkan secara vertikal, tegak lurus terhadap bidang horizontal ke atas dengan kecepatan awal tertentu. Arah gerak benda dan arah percepatan gravitasi berlawanan, gerak lurus berubah beraturan diperlambat.
Peluru akan mencapai titik tertinggi apabila Vt sama dengan nol.
t_{\text{maks}}= \frac {Vo} {g}
h= \frac {Vo^2} {2g}
t= {2} \times {t_{\text{maks}}}
{V_{\text{t}}^2}= V_{\text{0}}^2 - 2 \times{g} \times{h}
Keterangan:
  • Kecepatan awal= Vo
  • Kecepatan benda di suatu ketinggian tertentu= Vt
  • Percepatan /Gravitasi bumi: g
  • Tinggi maksimum: h
  • Waktu benda mencapai titik tertinggi: t maks
  • Waktu ketika benda kembali ke tanah: t

Gerak jatuh bebas

Benda dikatakan jatuh bebas apabila benda:
  • Memiliki ketinggian tertentu (h) dari atas tanah.
  • Benda tersebut dijatuhkan tegak lurus bidang horizontal tanpa kecepatan awal.
Selama bergerak ke bawah, benda dipengaruhi oleh percepatan gravitasi bumi (g) dan arah kecepatan/gerak benda searah, merupakan gerak lurus berubah beraturan dipercepat.
v= \sqrt{2gh}
t= \sqrt{2h/g}
Keterangan:
  • v = kecepatan di permukaan tanah
  • g = gravitasi bumi
  • h = tinggi dari permukaan tanah
  • t = lama benda sampai di tanah

Gerak vertikal ke bawah

Benda dilemparkan tegak lurus bidang horizontal arahnya ke bawah.
Arah percepatan gravitasi dan arah gerak benda searah, merupakan gerak lurus berubah beraturan dipercepat.
Vt= {Vo} + g \times t
Vt^2= {Vo^2} + 2 \times g \times h
Keterangan:
  • Vo = kecepatan awal
  • Vt = kecepatan pada ketinggian tertentu dari tanah
  • g = gravitasi bumi
  • h = tinggi dari permukaan tanah
  • t = waktu

Gerak melingkar

Gerak dengan lintasan berupa lingkaran.
Circular motion diagram.png
Dari diagram di atas, diketahui benda bergerak sejauh ω° selama  t sekon, maka benda dikatakan melakukan perpindahan sudut.
Benda melalukan 1 putaran penuh. Besar perpindahan linear adalah  2 \pi r atau keliling lingkaran. Besar perpindahan sudut dalam 1 putaran penuh adalah  2 \pi radian atau 360°.
 2 \pi rad = 360^\circ
 1 rad = \frac {360^\circ} {2 \pi} = \frac {180^\circ} {\pi} = 57,3^\circ

Perpindahan sudut, kecepatan sudut, dan percepatan sudut

Perpindahan sudut adalah posisi sudut benda yang bergerak secara melingkar dalam selang waktu tertentu.
 \theta = \omega \times t
Keterangan:
  •  \theta = perpindahan sudut (rad)
  •  \omega = kecepatan sudut (rad/s)
  • t = waktu (sekon)
Kecepatan sudut rata-rata ( \overline{\omega} ): perpindahan sudut per selang waktu.
 \overline{\omega} = \frac {\vartriangle\theta} {\vartriangle t} = \frac {\theta_{2} - \theta_{1}} {t_{2} - t_{1}}
Percepatan sudut rata-rata ( \alpha ): perubahan kecepatan sudut per selang waktu.
 \alpha = \frac {\vartriangle\omega} {\vartriangle t} = \frac {\omega_{2} - \omega_{1}} {t_{2} - t_{1}}
 \alpha  : Percepatan sudut (rad/s2)

Percepatan sentripetal

Arah percepatan sentripetal selalu menuju ke pusat lingkaran.
Percepatan sentripetal tidak menambah kecepatan, melainkan hanya untuk mempertahankan benda agar tetap bergerak melingkar.
 A_{s} = \frac {v^2} {r} = \omega^2 r
Keterangan:
  • r : jari-jari benda/lingkaran
  • As: percepatan sentripetal (rad/s2)

Gerak parabola

Gerak parabola adalah gerak yang membentuk sudut tertentu terhadap bidang horizontal. Pada gerak parabola, gesekan diabaikan, dan gaya yang bekerja hanya gaya berat/percepatan gravitasi.
Gerak parabola.png
Pada titik awal,
Vo_{x} = Vo \times \cos \alpha
Vo_{y} = Vo \times \sin \alpha
Pada titik A (t = ta):
Va_{x} = Vo_{x} = Vo \times \cos \alpha
Va_{y} = Vo_{y} - g \times t_{a}
Letak/posisi di A:
X_{a} = Vo_{x} \times t_{a}
Y_{a} = Vo_{y} \times t_{a} - 1/2 g {t_{a}^2}
Titik tertinggi yang bisa dicapai (B):
h_{max} = \frac {{(Vo\times\sin\alpha})^2} {2g} = \frac {{(Vo^2\times\sin^2\alpha})} {2g}
Waktu untuk sampai di titik tertinggi (B) (tb):
 V_{y}=0
 V_{y}= Vo_{y} - g t
 0= Vo \sin \alpha - g t
t_{b} = \frac {{(Vo\times\sin\alpha})} {g} = \frac {Vo_{y}} {g}
Jarak mendatar/horizontal dari titik awal sampai titik B (Xb):
X_{b} = Vo_{x} \times t_{b}
X_{b} = Vo \cos \alpha \times (\frac {{(Vo\times\sin\alpha})} {g})
X_{b} = \frac {{Vo^2} \times \sin 2\alpha} {2g}
Jarak vertikal dari titik awal ke titik B (Yb):
Y_{b} = \frac {Vo_{y}^2} {2g}
Y_{b} = \frac {{Vo^2} \times \sin^2 \alpha} {2g}
Waktu untuk sampai di titik C:
t_{total} = \frac {{(2 Vo\times\sin\alpha})} {g} = \frac {2 Vo_{y}} {g}
Jarak dari awal bola bergerak sampai titik C:
X_{maks} = Vo{x} \times t_{total}
X_{maks} = Vo \times \cos \alpha \times \frac {{(2 Vo\times\sin\alpha})} {g}
X_{maks} = \frac {{Vo^2} \times \sin 2\alpha} {g}